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Outline 

 Drive is created by the stagnation of a multicomponent, 

releasing reservoir (How drive is created) 

 Predicted > 10 Mbar drive platform design 

Current status of Cu and other reservoir components 

What still needs to be done (known unknowns) 

 Summary 
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Ramped compression 

waves can probe EOS 

along isentrope 

http://impact.arc.nasa.gov 

Asteroid and meteor impacts 

Diamond ICF capsule 

simulation with strength 

[Darwin Ho, BAPS (2008)] 

Achieving off-Hugoniot, high-pressure measurements are 

important in many fields of study 

Ramp and shock compressions follow different paths on Equilibrium EOS surface 

(Figure courtesy of Ray Smith and Jean-Paul Davis). 

[H-S. Park, PRL 104, 135504 (2010)] 

Strength measurements via RT 

growth 
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Single material gradient density pistons work by shock release 

and recompression 

Key component is seeding a strong planar shock in a reservoir.   

Any platform that can seed a strong enough shock will can create a 

gradient density piston (Z, Omega, gas-gun, high-explosives, direct 

laser ablation, NIF, …).   

Edwards et al, PRL 92 no. 7, 075002 (2004).   

Seeded 

shock 
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Shock is seeded by laser induced ablation 

 The energy in the laser beams is transferred to 

the reservoir via ablation.  

 The integrated Tr history produced by the lasers 

into the hohlraum is proportional to the final 

pressure on the sample.  
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Put in 10 Mbar drive reservoir from NIF Cu shot 
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Solid density layers allow for higher peak pressure (Pr ~ ρ∙u(t)2). 

Use of foam layers shortens gap and increases peak pressure.  
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Full >10 Mbar Reservoir has Cu and CRF foam steps  

The ability to simulate the release and recompression behavior of the 

density steps is critical to designing a >10 Mbar quasi-isentropic 

drive.  
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First we tested the BrC4H3 and CRF foam behavior  

N110319 VISAR 
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Designed simplified Cu layer reservoir to match expected ρ(t) and 

Te(t) of >10 Mbar design 

EOS region probed by simplified Cu layer reservoir is 

designed to measure region of interest for full >10 Mbar 

design. 
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Cu reservoir drive behavior was as expected 

 CRF and BrC4H3 

behavior behaves as 

expected.  

 Cu release is also in 

agreement with 

predicted behavior.  

 Laser coupling to 

reservoir is also as 

predicted (peak 

velocity matches 

simulation) 
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Low density (< 50 mg/cc) foam behavior is remaining unknown 

All components of drive reservoir have been tested except for low 

density foams (<50 mg/cc).  
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Summary 

 Drive is created by the stagnation of a multicomponent, 

releasing reservoir.  

 Tested BrC4H3 and CRF foam (50 – 500 mg/cc) 

components of drive.  

 Tested high density component of >10 Mbar drive 

reservoir and found the measurement to be in 

agreement with simulations.  

 Release and recompression behavior of low density 

foams (< 50 mg/cc) needs to be quantified to complete 

validation of >10 Mbar drive.  
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Backup slides  
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A plasma gradient piston can drive Molybdenum to 10+ Mbar 

quasi-isentropically without inducing melt  
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Observable density layers in VISAR data allow precision 

tuning of drive profile.   

Precise tuning of the drive pulse can be achieved since the 

relative timing, duration, and density of each step can be 

independently adjusted. 
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